Efficacy of GKT831 in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid:

Interim efficacy results of a phase 2 clinical trial

1University of Thessaly, Greece; 2University of Milano-Bicocca, Italy; 3UZ Leuven, Belgium; 4Ghent University Hospital, Belgium; 5Tel Aviv Sourasky Medical Center/Sheba Medical Center, Israel; 6King’s College Hospital NHS Foundation Trust, United Kingdom; 7University of Rochester Medical Center, United States; 8University of British Columbia, Canada; 9University of California Davis, United States; 10Hospital Universitario Virgen de la Victoria, Spain; 11Sheba Medical Center, Israel; 12Medical School, Johannes Gutenberg University Mainz, Germany; 13Hospital Erasmus, Belgium; 14Baylor College of Medicine Medical Center, Houston, United States; 15University of Montreal, Canada; 16University of Erlangen-Nuremberg, Germany; 17University of California Davis, United States; 18Rabin Medical Center, Haifa, Israel; 19IRCSS Ospedale Civile Universitario, Pavia, Italy; 20Queen Elizabeth Medical Center, United Kingdom; 21University Hospitals Cleveland Medical Center, United States; 22Goethe University Frankfurt, Germany; 23Abertawe Bro Morgannwg University, United Kingdom; 24Schiff Center for Liver Diseases, United States; 25Tayside Medical Science Centre (TASC), United Kingdom; 26Hospital Ramón Y Cajal, Spain; 27John Radcliffe Hospital, United Kingdom; 28Hull Royal Infirmary, United Kingdom; 29Icahn School of Medicine at Mount Sinai, United States; 30University of Erlangen-Nuremberg, Germany; 31Laiko General Hospital of Athens, Greece; 32Dayton Gastroenterology-Sylvania, United States; 33Yale School of Medicine, United States; 34North Shore University Hospital, Israel; 35University of Padua, Italy; 36Southern Therapy and Advanced Research, United States; 37Mayo Clinic Hospital, United States; 38Gloucestershire Hospitals NHS Trust, United Kingdom; 39Methodist University Hospital, United States; 40Marche Polytechnic University Faculty of Medicine, Italy; 41University of Pittsburgh Medical Center, United States; 42University Clinic Heidelberg, Germany; 43Plymouth Hospitals NHS Trust, United Kingdom; 44NYU Hepatology Associates, United States; 45University of Calgary, Canada; 46Rambam Healthcare Campus, Israel; 47General Hospital of Athens Hippocrates, Greece; 48Genkyotex, Plan-les-Ouates, Switzerland
Unmet needs in primary biliary cholangitis (PBC)

• **Definition** - Chronic, cholestatic liver disease characterized by non-suppurative granulomatous cholangitis; duct destruction and ductopenia, and portal fibrosis that progresses slowly to biliary cirrhosis.

• **Etiology** – Complex disorder, caused by a complex of largely unknown genetic and environmental factors. Putative autoimmune pathogenesis.

• **Therapy** - Ursodeoxycholic acid (UDCA) is the first-line drug effective in the majority (60-70% of responders). Obeticholic acid (OCA) is the licensed second-line therapy.
Current PBC therapies target cholestasis by modulating bile acid metabolism (UDCA, OCA)

However inflammation & fibrosis contribute to cholestasis, bile duct & liver injury

NADPH oxidases NOX1 & NOX4 produce ROS and modulate signaling through oxidation of signaling proteins

NOX1/4 drive multiple inflammatory & fibrogenic pathways (TGFβ, PDGF, TLR4, ASK1, NF-κB, CCL2,…)

NOX1 also activates pathways thought to mediate itching, such as TRPV1

GKT831 shows marked activity in animal models (bile duct ligation, MDR2 KO, STAM, diet-induced NASH, CCL4)
GKT831 in PBC: Study design and Key eligibility criteria

Study design (objectives)
- 24-week treatment period - 4-week follow up
- **Primary efficacy endpoint** for interim and final analysis: *Percent change in serum GGT from baseline*
- Key secondary endpoint is **ALP reduction**
- **Safety and tolerability**
- Interim analysis at week 6 and final analysis at week 24

Key eligibility criteria (population)
- Male or female PBC patient aged 18-80 years
- **Serum ALP ≥1.5XULN** and **serum GGT ≥1.5XULN** (stratification according to baseline GGT (> or < 2.5XULN))
- On UDCA for ≥ 6 months & stable dose for ≥ 3 months
- Exclusion of history of **cirrhosis with complications** or **current MELD score ≥ 15**
- **ALT > 3XULN** or total bilirubin > **1XULN**
- Hepatorenal syndrome or **serum creatinine > ULN**
- Prohibited medications: **fibrates and obeticholic acid (12-week wash out)**
GSN000300 – A large 24-week Phase 2 trial in patients with primary biliary cholangitis

Baseline
- Placebo
- GKT831 400mg once a day
- GKT831 400mg twice a day

Interim analysis
- GGT, ALP, bilirubin
- ALT, AST
- hsCRP
- FIB-4, APRI

Main analysis
- GGT, ALP, bilirubin
- ALT, AST, CK-18
- hsCRP, IL-6
- Fibroscan, ProC3, ELF, FIB-4, APRI
- PBC-40, pruritus VAS
- IL-4, IL-12, IL-17A, IgM, IFN-γ
- FGF-19, C4, total bile acids

Inadequate biochemical response to UDCA
- ALP ≥1.5XULN
- GGT ≥1.5XULN

111 randomized (initial target 102)

Follow up

Cholestasis

Liver injury

Inflammation

Fibrosis

Quality of life

Immune activation

Bile acid metabolism
Interim analysis at Week 6: Baseline patient characteristics

As per protocol, the predefined interim analysis was conducted when > 90 patients (92) reached Week 6

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>GKT831 400mg OD(^1)</th>
<th>GKT831 400mg BID(^2)</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>Age (years)</td>
<td>56 (10)</td>
<td>56 (10)</td>
<td>55 (9)</td>
<td>56 (9)</td>
</tr>
<tr>
<td>Females (%)</td>
<td>97</td>
<td>84</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>304 (151)</td>
<td>282 (89)</td>
<td>350 (177)</td>
<td>312 (145)</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>224 (212)</td>
<td>215 (154)</td>
<td>237 (193)</td>
<td>225 (187)</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>44 (18)</td>
<td>44 (22)</td>
<td>55 (34)</td>
<td>47 (26)</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>44 (19)</td>
<td>43 (20)</td>
<td>50 (33)</td>
<td>46 (24)</td>
</tr>
<tr>
<td>Total bilirubin (µmol/L)</td>
<td>11 (5)</td>
<td>11 (5)</td>
<td>10 (4)</td>
<td>11 (4)</td>
</tr>
<tr>
<td>hsCRP (mg/L)</td>
<td>5.0 (4.9)</td>
<td>5.8 (5.7)</td>
<td>4.7 (5.1)</td>
<td>5.2 (5.2)</td>
</tr>
</tbody>
</table>

Values expressed as mean (SD). Baseline: Day 1. Normal ranges: GGT up to 45 and 65 U/L (F/M), ALP up to 125 U/L

Population includes very active, difficult to treat PBC patients

\(^1\) Once daily; \(^2\) Twice daily
Primary efficacy endpoint: GKT831 achieves statistically significant reductions in GGT at Week 6

Primary endpoint: percent change in GGT

Absolute change in GGT over time
Greater GGT reductions in patients with higher baseline GGT (≥2.5XULN, \(n=68\))

GGT ≥2.5XULN was the pre-specified stratification cut-off

GKT831 also benefits patients with more active disease
GKT831 also achieves statistically significant reductions in ALP at week 6

Key secondary endpoint: percent change in ALP

Absolute change in ALP levels

Table: Proportion of patients with ≥15% reduction in ALP at Week 6

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>GKT831 400mg OD</th>
<th>GKT831 400mg BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of patients with ≥15% reduction in ALP at Week 6</td>
<td>16.1%</td>
<td>25.8%</td>
<td>53.3%</td>
</tr>
</tbody>
</table>
GKT831 achieves dose dependent reductions in liver transaminases at week 6

Serum AST levels

![Graph showing mean AST levels for Placebo and GKT831 at baseline and week 6.](image)

Serum ALT levels

![Graph showing mean ALT levels for Placebo and GKT831 at baseline and week 6.](image)

Percent change from Baseline to Week 6

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>GKT831 400mg OD</th>
<th>GKT831 400mg BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean values

- Placebo: Mean AST (U/L)
- GKT831 400mg OD: Mean AST (U/L)
- GKT831 400mg BID: Mean AST (U/L)

- Placebo: Mean ALT (U/L)
- GKT831 400mg OD: Mean ALT (U/L)
- GKT831 400mg BID: Mean ALT (U/L)
No detectable changes in total or conjugated bilirubin from baseline to week 6

Total bilirubin

- Placebo: n=31
- GKT831 400mg OD: n=31
- GKT831 400mg BID: n=30

Conjugated bilirubin

- Placebo: n=31
- GKT831 400mg OD: n=31
- GKT831 400mg BID: n=30
Reduction in inflammatory marker hsCRP consistent with anti-inflammatory mechanism

Mean hsCRP

- Baseline
- Week 6

Percent change in hsCRP

<table>
<thead>
<tr>
<th>Group</th>
<th>Placebo</th>
<th>GKT831 400mg OD</th>
<th>GKT831 400mg BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>31</td>
<td>31</td>
<td>30</td>
</tr>
</tbody>
</table>

Mean ± SEM

Median values

$p=NS$
Dose dependent reductions in FIB-4 and APRI, consistent with anti-fibrotic mechanism

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>GKT831 OD</th>
<th>GKT831 BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median % change in FIB-4 score from Baseline to Week 6</td>
<td>n=31</td>
<td>n=31</td>
<td>n=30</td>
</tr>
<tr>
<td>Median values</td>
<td>-5</td>
<td>0</td>
<td>-15</td>
</tr>
</tbody>
</table>

\(p<0.05 \)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>GKT831 OD</th>
<th>GKT831 BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median % change in APRI score from Baseline to Week 6</td>
<td>n=31</td>
<td>n=31</td>
<td>n=30</td>
</tr>
<tr>
<td>Median values</td>
<td>-5</td>
<td>0</td>
<td>-15</td>
</tr>
</tbody>
</table>

\(p=NS \)

At weeks 12 & 24, assessments of liver fibrosis include Pro-C3 and the ELF score. Transient elastography (Fibroscan®) performed at week 24.
Clinical safety profile

- **Positive recommendation at each of the 3 Safety Monitoring board meetings**
 - 3 pre-planned data review meetings by Independent Safety Monitoring Board
 - Positive recommendation to continue trial as per protocol after each of the 3 review meetings
 - Last SMB review meeting held when 87 patients had completed week 6 and 41 had completed week 24

- **Favorable clinical safety profile over the full 24-week treatment period**
 - High treatment completion rate (>96% of patients have completed the full 24-week treatment)
 - 4 patients discontinued treatment prematurely; 2 for administrative reasons and 2 for safety reasons:
 - One patient with dizziness, abdominal bloating, dyspnea, and palpitations after a single dose
 - One patient with elevations in transaminases (similar elevations a few months prior to study start, decision made to interrupt treatment)
 - 2 SAEs, both unrelated to study drug
 - One case of grade 1 urinary tract infection (subject hospitalized to initiate IV antibiotics)
 - Once case of multiple bone fractures due to a traffic accident
 - No treatment interruption or discontinuations due to pruritus or fatigue
Key Findings and Conclusions

- In patients with inadequate response to UDCA, GKT831 induces time and dose dependent reduction in GGT and ALP after only 6 weeks of treatment
- GKT831 is the first non-anticholestatic compound to significantly improve markers of cholestasis, inflammation and fibrosis in PBC
- GKT831 appears to be well tolerated with no signals related to pruritus or fatigue
- Final results at after 24 weeks of treatment will provide information about GKT831 effects on liver fibrosis and quality of life
Acknowledgements

Pietro Invernizzi, Italy, George Dalekos, Greece, Frederik Nevens, Belgium, Van Vlierberghe Hans, Belgium, Ehud Zigmond, Israel, Raul J. Andrade, Spain, Ziv Ben Ari, Israel, Michael Heneghan, United Kingdom, Jonathan Huang, United States, Stephen Harrison, United States, Gerald Minuk, Canada, Jörn Schattenberg, Germany, Christophe Moreno, Belgium, John Vierling, United States, Catherine Vincent, Canada, Christopher Bowlus, United States, Yoav Lurie, Israel, Luigi Muratori, Italy, Grazia Niro, Italy, Gideon Hirschfield, United Kingdom, Anthony Post, United States, Stefan Zeuzem, Germany, Tania Welzel, Germany, Chin Lye Ch'ng, United Kingdom, Cynthia LEVY, United States, Michael Miller, United Kingdom, Agustin Albillos, Spain, Jane D. Collier, United Kingdom, Lynsey Corless, United Kingdom, Douglas Dieterich, United States, Andreas E Kremer, Germany, George Papatheodoridis, Greece, David Romeo, United States, Marina Silveira, United States, David Bernstein, United States, Michal Cohen-Naftaly, Israel, Annarosa Floreani, Italy, Brian Borg, United States, Elizabeth Carey, United States, Coral Hollywood, United Kingdom, Benedict Maliakkal, United States, Marco Marzioni, Italy, Mordechai Rabinovitz, United States, Christian Rupp, Germany, David Sheridan, United Kingdom, Carmen Stanca, United States, Mark G Swain, Canada, Ella Veitsman, Israel, Spyridon Dourakis, Greece, Philippe Wiesel, Switzerland